Определение и применение корреляции

Рейтинг лучших брокеров бинарных опционов за 2020 год:
Содержание

Определение и применение корреляции

Коэффициент корреляции — это статистический показатель зависимости двух случайных величин. Коэффициент корреляции может принимать значения от -1 до +1. При этом, значение -1 будет говорить об отсутствии корреляции между величинами, 0 — о нулевой корреляции, а +1 — о полной корреляции величин. Т.е., че ближе значение коэффициента корреляции к +1, тем сильнее связь мезду двумя случайными величинами.

Коэффициент корреляции — это корреляцинное отношение, математическая мера корреляции двух случайных величин. В случае, если изменение одной случайной величины не ведёт к закономерному изменению другой случайной величины, но приводит к изменению другой статистической характеристики данной случайной величины, то подобная связь не считается корреляционной, хотя и является статистической.

Коэффициент корреляции — это мера линейной зависимости двух случайных величин в теории вероятностей и статистике. Некоторые виды коэффициентов корреляции могут быть положительными или отрицательными. В первом случае предполагается, что мы можем определить только наличие или отсутствие связи, а во втором — также и её направление.

Коэффициент корреляции — это статистический показатель, показывающий, насколько связаны между собой колебания значений двух других показателей. Например, насколько движение доходности ПИФа связано, перекликается (коррелирует) с движением индекса, выбранного для расчета коэффициента бета для этого ПИФа. Чем ближе значение коэффициента корреляции к 1, тем больше коррелируют ПИФ и индекс, а значит коэффициент бета и, следовательно, коэффициент альфа можно принимать к рассмотрению. Если значение этого коэффициента корреляции меньше 0,75, то указанные показатели бессмысленны.

Коэффициент корреляции (Correlation coefficient) — это

Коэффициент корреляции — это математическая мера корреляции двух величин. В том случае, когда изменение одной из величин не приводит к закономерному изменению другой величины, то можно говорить об отсутствии корреляции между этими величинами. Коэффициенты корреляции могут быть положительными и отрицательными. Если при увеличении значения одной величины происходит уменьшение значений другой величины, то их коэффициент корреляции отрицательный. В случае, когда увеличение значений первого объекта наблюдения приводит к увеличениям значения второго объекта, то можно говорить о положительном коэффициенте.

Коэффициент корреляции — это величина, которая может варьировать в пределах от +1 до -1. В случае полной положительной корреляции этот коэффициент равен плюс 1, а при полной отрицательной — минус 1. На графике этому соответствует прямая линия, проходящая через точки пересечения значений каждой пары данных:

Коэффициент корреляции — это показатель связи между двумя переменными. Расчёты подобных двумерных критериев взаимосвязи основываются на формировании парных значений, которые образовываются из рассматриваемых зависимых выборок.

Коэффициент корреляции — это сила и направление связи между независимой и зависимой переменными. Значения r находятся в диапазоне между — 1.0 и + 1.0. Когда r имеет положительное значение, связь между х и у является положительной, а когда значение r отрицательно, связь также отрицательна. Коэффициент корреляции, близкий к нулевому значению, свидетельствует о том, что между х и у связи не существует.

Коэффициент корреляции (Correlation coefficient) — это

Честные русские брокеры опционов:

Коэффициент корреляции — это объективный показатель, свидетельствующий о наличии или отсутствии связи между переменными, и измеряющий выраженность этой связи. Коэффициент корреляции был предложен как инструмент, с помощью которого можно проверить гипотезу о зависимости и измерить силу зависимости двух переменных. Сразу заметим, что коэффициент корреляции оказался не идеальным инструментом, он пригоден лишь для измерения силы линейной зависимости.

Коэффициент корреляции — это инструмент, с помощью которого можно проверить гипотезу о зависимости и измерить силу зависимости двух переменных. Если распределение переменных нормальное или несущественно отличается от нормального, применяют коэффициент корреляции Пирсона. Для порядковых (ранговых) переменных или переменных, чье распределение существенно отличается от нормального, используется коэффициент корреляции Спирмана или Кендалла. Имейте в виду, существуют и другие коэффициенты.

Коэффициент корреляции (Correlation coefficient) — это

Для чего нужен коэффициент корреляции?

Связь, которая существует между случайными величинами разной природы, например, между величиной Х и величиной Y, не обязательно является следствием прямой зависимости одной величины от другой (так называемая функциональная связь). В некоторых случаях обе величины зависят от целой совокупности разных факторов, общих для обеих величин, в результате чего и формируется связанные друг с другом закономерности. Когда связь между случайными величинами обнаружена с помощью статистики, мы не можем утверждать, что обнаружили причину происходящего изменения параметров, скорее мы лишь увидели два взаимосвязанных следствия.

Например, дети, которые чаще смотрят по телевизору американские боевики, меньше читают. Дети, которые больше читают, лучше учатся. Не так-то просто решить, где тут причины, а где следствия, но это и не является задачей статистики. Статистика может лишь, выдвинув гипотезу о наличии связи, подкрепить ее цифрами. Если связь действительно имеется, говорят, что между двумя случайными величинами есть корреляция. Если увеличение одной случайной величины связано с увеличением второй случайной величины, корреляция называется прямой. Например, количество прочитанных страниц за год и средний балл (успеваемость). Если, напротив рост одной величины связано с уменьшением другой, говорят об обратной корреляции. Например, количество боевиков и количество прочитанных страниц.

Взаимная связь двух случайных величин называется корреляцией, корреляционный анализ позволяет определить наличие такой связи, оценить, насколько тесна и существенна эта связь. Все это выражается количественно.

Как определить, есть ли корреляция между величинами? В большинстве случаев, это можно увидеть на обычном графике. Например, по каждому ребенку из нашей выборки можно определить величину Хi (число страниц) и Yi (средний балл годовой оценки), и записать эти данные в виде таблицы. Построить оси Х и Y, а затем нанести на график весь ряд точек таким образом, чтобы каждая из них имела определенную пару координат (Хi, Yi) из нашей таблицы. Поскольку мы в данном случае затрудняемся определить, что можно считать причиной, а что следствием, не важно, какая ось будет вертикальной, а какая горизонтальной.

Если график имеет вид а), то это говорит о наличии прямой корреляции, в случае, если он имеет вид б) — корреляция обратная. Отсутствие корреляции тоже можно приблизительно определить по виду графика — это случай в). С помощью коэффициента корреляции можно посчитать насколько тесная связь существует между величинами. Пусть, существует корреляция между ценой и спросом на товар. Количество купленных единиц продукта в зависимости от цены у разных продавцов показано в таблице:

Видно, что мы имеем дело с обратной корреляцией. Для количественной оценки тесноты связи используют коэффициент корреляции. Коэффициент r мы считаем в Excel, с помощью функции fx, далее статистические функции, функция КОРРЕЛ. По подсказке программы вводим мышью в два соответствующих поля два разных массива (Х и Y). В нашем случае коэффициент корреляции получился r= — 0,988. Надо отметить, что чем ближе к 0 коэффициент корреляции, тем слабее связь между величинами. Наиболее тесная связь при прямой корреляции соответствует коэффициенту r, близкому к +1. В нашем случае, корреляция обратная, но тоже очень тесная, и коэффициент близок к -1.

Что можно сказать о случайных величинах, у которых коэффициент имеет промежуточное значение? Например, если бы мы получили r=0,65. В этом случае, статистика позволяет сказать, что две случайные величины частично связаны друг с другом. Скажем на 65% влияние на количество покупок оказывала цена, а на 35% — другие обстоятельства.

Коэффициент корреляции (Correlation coefficient) — это

И еще одно важное обстоятельство надо упомянуть. Поскольку мы говорим о случайных величинах, всегда существует вероятность, что замеченная нами связь — случайное обстоятельство. Причем вероятность найти связь там, где ее нет, особенно велика тогда, когда точек в выборке мало, а при оценке Вы не построили график, а просто посчитали значение коэффициента корреляции на компьютере. Так, если мы оставим всего две разные точки в любой произвольной выборке, коэффициент корреляции будет равен или +1 или -1. Из школьного курса геометрии мы знаем, что через две точки можно всегда провести прямую линию. Для оценки статистической достоверности факта обнаруженной Вами связи полезно использовать так называемую корреляционную поправку:

В то время как задача корреляционного анализа — установить, являются ли данные случайные величины взаимосвязанными, цель регрессионного анализа — описать эту связь аналитической зависимостью, т.е. с помощью уравнения. Мы рассмотрим самый несложный случай, когда связь между точками на графике может быть представлена прямой линией. Зная уравнение прямой, мы можем находить значение функции по значению аргумента в тех точках, где значение Х известно, а Y — нет. Эти оценки бывают очень нужны, но они должны использоваться осторожно, особенно, если связь между величинами не слишком тесная. Отметим также, что из сопоставления формул для b и r видно, что коэффициент не дает значение наклона прямой, а лишь показывает сам факт наличия связи.

Коэффициент корреляции (Correlation coefficient) — это

Термин «корреляция» означает «связь». В эконометрике этот термин обычно используется в сочетании «коэффициенты корреляции». Рассмотрим линейный и непараметрические парные коэффициенты корреляции. Обсудим способы измерения связи между двумя случайными переменными. Пусть исходными данными является набор случайных векторов:

Выборочным коэффициентом корреляции, более подробно, выборочным линейным парным коэффициентом корреляции К. Пирсона, как известно, называется число:

Таким образом, близость коэффициента корреляции к 1 (по абсолютной величине) говорит о достаточно тесной линейной связи. Если случайные векторанезависимы и одинаково распределены, то выборочный коэффициент корреляции сходится к теоретическому при безграничном возрастании объема выборки (сходимость по вероятности):

Более того, выборочный коэффициент корреляции является асимптотически нормальным. Это означает, что

Она имеет довольно сложное выражение:

где теоретические центральные моменты порядка k и m:

Коэффициенты корреляции типа rn используются во многих алгоритмах многомерного статистического анализа. В теоретических рассмотрениях часто считают, что случайные вектора имеют двумерное нормальное распределение. Распределения реальных данных, как правило, отличны от нормальных. Почему же распространено представление о двумерном нормальном распределении? Дело в том, что теория в этом случае проще. В частности, равенство 0 теоретического коэффициента корреляции эквивалентно независимости случайных величин. Поэтому проверка независимости сводится к проверке статистической гипотезы о равенстве 0 теоретического коэффициента корреляции. Эта гипотеза принимается, если

Если предположение о двумерной нормальности не выполнено, то из равенства 0 теоретического коэффициента корреляции не вытекает независимость случайных величин. Нетрудно построить пример случайного вектора, для которого коэффициент корреляции равен 0, но координаты зависимы. Кроме того, для проверки гипотез о коэффициенте корреляции нельзя пользоваться таблицами, рассчитанными в предположении нормальности. Можно построить правила принятия решений на основе асимптотической нормальности выборочного коэффициента корреляции. Но есть и другой путь — перейти к непараметрическим коэффициентам корреляции, одинаково пригодным при любом непрерывном распределении случайного вектора.

Коэффициент корреляции (Correlation coefficient) — это

Для расчета непараметрического коэффициента ранговой корреляции Спирмена необходимо сделать следующее. Для каждого xi рассчитать его ранг ri в вариационном ряду, построенном по выборке Для каждого yi рассчитать его ранг qi в вариационном ряду, построенном по выборке Для набора из n пар (ri, qi), i=1,2. n вычислить линейный коэффициент корреляции. Он называется коэффициентом ранговой корреляции, поскольку определяется через ранги.В качестве примера рассмотрим данные из таблицы:

Для данных таблицы коэффициент линейной корреляции равен 0,83, непосредственной линейной связи нет. А вот коэффициент ранговой корреляции равен 1, поскольку увеличение одной переменной однозначно соответствует увеличению другой переменной. Во многих экономических задачах, например, при выборе инвестиционных проектов, достаточно именно монотонной зависимости одной переменной от другой.

Поскольку суммы рангов и их квадратов нетрудно подсчитать, то коэффициент ранговой корреляции Спирмена равен

Отметим, что коэффициент ранговой корреляции Спирмена остается постоянным при любом строго возрастающем преобразовании шкалы измерения результатов наблюдений. Другими словами, он является адекватным в порядковой шкале, как и другие ранговые статистики, например, статистики Вилкоксона, Смирнова, типа омега-квадрат для проверки однородности независимых выборок.

Широко используется также коэффициент ранговой корреляции Кендалла, коэффициент ранговой конкордации Кендалла и Б. Смита и др. Наиболее подробное обсуждение этой тематики содержится в монографии, необходимые для практических расчетов таблицы имеются в справочнике. Дискуссия о выборе вида коэффициентов корреляции продолжается до настоящего времени.

Формула и переменные коэффициента корреляции

Коэффициент корреляции показывает степень статистической зависимости между двумя числовыми переменными. Он вычисляется следующим образом:

где n — количество наблюдений, x — входная переменная, y — выходная переменная. Значения коэффициента корреляции всегда расположены в диапазоне от -1 до 1 и интерпретируются следующим образом:

— если коэффициент корреляции близок к 1, то между переменными наблюдается положительная корреляция. Иными словами, отмечается высокая степень связи входной и выходной переменных. В данном случае, если значения входной переменной x будут возрастать, то и выходная переменная также будет увеличиваться;

— если коэффициент корреляции близок к -1, это означает, что между переменными наблюдается отрицательная корреляция. Иными словами, поведение выходной переменной будет противоположным поведению входной. Если значение x будет возрастать, то y будет уменьшаться, и наоборот;

— промежуточные значения, близкие к 0, будут указывать на слабую корреляцию между переменными и, соответственно, низкую зависимость. Иными словами, поведение входной переменной x не будет совсем (или почти совсем) влиять на поведение y.

Коэффициент корреляции равен квадратному корню коэффициента детерминации, поэтому может применяться для оценки значимости регрессионных моделей. Очевидно, что если корреляция между переменными высокая, то, зная поведение входной переменной, проще предсказать поведение выходной, и полученное предвидение будет точнее (говорят, что входная переменная хорошо «объясняет» выходную). Однако, чем выше корреляция наблюдается между переменными, тем очевиднее связь между ними, например, взаимозависимость между ростом и весом людей, однако данное соотношение настолько очевидно, что не представляет интереса.

Пусть X,Y — две случайные величины, определённые на одном вероятностном пространстве. Тогда их коэффициент корреляции задаётся формулой:

где cov обозначает ковариацию, а D — дисперсию, или, что то же самое,

где символ Е обозначает мат ожидание.

1. Ковариация (корреляционный момент, ковариационный момент) в теории вероятностей и математической статистике мера линейной зависимости двух случайных величин. Пусть X, Y — две случайные величины, определённые на одном и том же вероятностном пространстве. Тогда их ковариация определяется следующим образом:

Предполагается, что все математические ожидания Е в правой части данного выражения определены.

Пусть X1, X2. Xn, Y1, Y2. Yn — выборки Xn и Yn случайных величин, определённых на одном и том же вероятностном пространстве. Тогда ковариацией между выборками Xn и Yn является:

Если ковариация положительна, то с ростом значений одной случайной величины, значения второй имеют тенденцию возрастать, а если знак отрицательный — то убывать. Однако только по абсолютному значению ковариации нельзя судить о том, насколько сильно величины взаимосвязаны, так как её масштаб зависит от их дисперсий. Масштаб можно отнормировать, поделив значение ковариации на произведение среднеквадратических отклонений (квадратных корней из дисперсий). При этом получается так называемый коэффициент корреляции Пирсона, который всегда находится в интервале от -1 до 1.

Случайные величины, имеющие нулевую ковариацию, называются некоррелированными. Независимые случайные величины всегда некоррелированы, но не наоборот. Обсудим достоинства и недостатки ковариации, как величины, характеризующей зависимость двух случайных величин.

1. Если ковариация отлична от нуля, то случайные величины зависимы. Чтобы судить о наличии зависимости согласно любому из определений независимости, требуется знать совместное распределение пары случайных величин. Но найти совместное распределение часто бывает сложнее, чем посчитать мат. ожидание произведения случайных величин. Если нам повезёт, и мат ожидание произведения случайных величин не будет равняться произведению их математических ожиданий, мы скажем, что случайные величины зависимы, не находя их совместного распределения! Это очень хорошо.

2. Величина ковариации не является «безразмерной»: если е — объем газа в сосуде, а n — давление этого газа, то ковариация измеряется в м3Па. Иначе говоря, при умножении этих величин на какое-нибудь число ковариация тоже умножается на это число. Но умножение на число не сказывается на «степени зависимости» величин (они от этого «более зависимыми» не становятся), так что большое значение ковариации не означает более сильной зависимости. Это очень плохо.

Коэффициент корреляции (Correlation coefficient) — это

Нужно как-то нормировать ковариацию, получив из неё «безразмерную» величину, абсолютное значение которой: не менялось бы при умножении случайных величин на число и свидетельствовало бы о «силе зависимости» случайных величин.

Замечание: Говоря о «силе» зависимости между случайными величинами, мы имеем в виду следующее. Самая сильная зависимость — функциональная, а из функциональных — линейная зависимость, когда:

Бывают гораздо более слабые зависимости. Так, если по последовательности независимых случайных величин построить величины:

то эти величины зависимы, но очень «слабо»: через единственное общее слагаемое Е25. Сильно ли зависимы число гербов в первых двадцати пяти подбрасываниях монеты и число гербов в испытаниях с двадцать пятого по девяностое? Итак, следующая величина есть всего лишь ковариация, нормированная нужным образом.

Теорема (неравенство Коши — Буняковского):

Ковариационная матрица (или матрица ковариаций) в теории вероятностей — это матрица, составленная из попарных ковариаций элементов одного или двух случайных векторов. Ковариационная матрица случайного вектора — квадратная симметрическая матрица, на диагонали которой располагаются дисперсии компонент вектора, а внедиагональные элементы — ковариациями между компонентами.

Такая матрица ковариации является обобщением дисперсии для многомерной случайной величины, а ее след — скалярным выражением дисперсии многомерной случайной величины. Собственные векторы и собственные числа этой матрицы позволяют оценить размеры и форму облака распределения такой случайной величины, аппроксимировав его эллипсоидом (или эллипсом в двумерном случае).

Совет от Генри Форда:  Parabolic Sar индикаторы тренда для бинарных опционов. Как пользоваться индикатором Параболик Сар

Свойства мартиц ковариации:

2. Мат. ожидание. Рассмотрим случайную величину с числовыми значениями. Часто оказывается полезным связать с этой функцией число — ее «среднее значение» или, как говорят, «среднюю величину», «показатель центральной тенденции». По ряду причин, некоторые из которых будут ясны из дальнейшего, в качестве «среднего значения» обычно используют мат. ожидание.

Определение 1. Мат ожиданием случайной величины Х называется число:

т.е. Мат ожидание случайной величины — это взвешенная сумма значений случайной величины с весами, равными вероятностям соответствующих элементарных событий.

Пример. Вычислим мат ожидание числа, выпавшего на верхней грани игрального кубика. Непосредственно из определения 1 следует, что

Утверждение 2. Пусть случайная величина Х принимает значения х1, х2,…, хm. Тогда справедливо равенство:

т.е. Мат. ожидание случайной величины — это взвешенная сумма значений случайной величины с весами, равными вероятностям того, что случайная величина принимает определенные значения. В отличие от (4), где суммирование проводится непосредственно по элементарным событиям, случайное событие

может состоять из нескольких элементарных событий. Иногда соотношение принимают как определение мат ожидания. Однако с помощью определения, как показано далее, более легко установить свойства мат. ожидания, нужные для построения вероятностных моделей реальных явлений, чем с помощью соотношения. Для доказательства соотношения сгруппируем в члены с одинаковыми значениями случайной величины:

Поскольку постоянный множитель можно вынести за знак суммы, то

По определению вероятности события:

С помощью двух последних соотношений получаем требуемое:

Понятие мат ожидания в вероятностно-статистической теории соответствует понятию центра тяжести в механике. Поместим в точки х1, х2,…, хm на числовой оси массы P(X=x1), P(X=x2),…, P(X=xm) соответственно. Тогда равенство показывает, что центр тяжести этой системы материальных точек совпадает с мат ожиданием, что показывает естественность определения.

Утверждение 3. Пусть Х — случайная величина, М(Х) — ее мат. ожидание, а — некоторое число. Тогда:

Для доказательства рассмотрим сначала случайную величину, являющуюся постоянной, т.е. функция отображает пространство элементарных событий в единственную точку. Поскольку постоянный множитель можно выносить за знак суммы, то

Если каждый член суммы разбивается на два слагаемых, то и вся сумма разбивается на две суммы, из которых первая составлена из первых слагаемых, а вторая — из вторых. Следовательно, мат ожидание суммы двух случайных величин Х+У, определенных на одном и том же пространстве элементарных событий, равно сумме математических ожиданий М(Х) и М(У) этих случайных величин:

Упростим последнее равенство. Как показано в начале доказательства утверждения 3, мат. ожидание константы — сама эта константа. Поскольку постоянный множитель можно выносить за знак суммы и правая часть последнего равенства равна 0:

Из сказанного вытекает

поскольку второе слагаемое в равенстве 3) всегда неотрицательно и равно 0 только при указанном значении а.

Утверждение 4. Пусть случайная величина Х принимает значения х1, х2,…, хm, а f — некоторая функция числового аргумента. Тогда

Для доказательства сгруппируем в правой части равенства, определяющего мат ожидание, члены с одинаковыми значениями:

Пользуясь тем, что постоянный множитель можно выносить за знак суммы, и определением вероятности случайного события, получаем:

что и требовалось доказать.

Утверждение 5. Пусть Х и У — случайные величины, определенные на одном и том же пространстве элементарных событий, а и b — некоторые числа. Тогда

С помощью определения мат. ожидания и свойств символа суммирования получаем цепочку равенств:

Выше показано, как зависит мат. ожидание от перехода к другому началу отсчета и к другой единице измерения, а также к функциям от случайных величин. Полученные результаты постоянно используются в технико-экономическом анализе, при оценке финансово-хозяйственной деятельности предприятия, при переходе от одной валюты к другой во внешнеэкономических расчетах, в нормативно-технической документации и др. Рассматриваемые результаты позволяют применять одни и те же расчетные формулы при различных параметрах масштаба и сдвига.

Коэффициент корреляции (Correlation coefficient) — это

3. Дисперсия. Мат ожидание показывает, вокруг какой точки группируются значения случайной величины. Необходимо также уметь измерить изменчивость случайной величины относительно мат ожидания.

Определение 5. Дисперсией случайной величины Х называется число

Установим ряд свойств дисперсии случайной величины, постоянно используемых в вероятностно-статистических методах принятия решений. Утверждение 8. Пусть Х — случайная величина, а и b — некоторые числа,

Поскольку постоянный множитель можно выносить за знак суммы, то

Утверждение 8 показывает, в частности, как меняется дисперсия результата наблюдений при изменении начала отсчета и единицы измерения. Оно дает правило преобразования расчетных формул при переходе к другим значениям параметров сдвига и масштаба.

Утверждение 9. Если случайные величины Х и У независимы, то дисперсия их суммы Х+У равна сумме дисперсий. Для доказательства воспользуемся тождеством:

которое вытекает из известной формулы элементарной алгебры:

Из утверждений 3 и 5 и определения дисперсии следует, что:

Согласно утверждению 6 из независимости Х и У вытекает независимость Х-М(Х) и У-М(У). Из утверждения 7 следует, что:

Из утверждения 3 правая часть последнего равенства равна 0, откуда с учетом двух предыдущих равенств и следует заключение утверждения 9.

Утверждение 10. Пусть X1, X2,…, Xk — попарно независимые случайные величины. Пусть Yk — их сумма, тогда мат ожидание суммы равно сумме математических ожиданий слагаемых, дисперсия суммы равна сумме дисперсий слагаемых:

Соотношения, сформулированные в утверждении 10, являются основными при изучении выборочных характеристик, поскольку результаты наблюдений или измерений, включенные в выборку, обычно рассматриваются в математической статистике, теории принятия решений и эконометрике как реализации независимых случайных величин.

Для любого набора числовых случайных величин (не только независимых) мат. ожидание их суммы равно сумме их математических ожиданий. Это утверждение является обобщением утверждения 5. Строгое доказательство легко проводится методом математической индукции.

При выводе формулы для дисперсии D(Yk) воспользуемся следующим свойством символа суммирования:

Воспользуемся теперь тем, что мат ожидание суммы равно сумме математических ожиданий:

Как показано при доказательстве утверждения 9, из попарной независимости рассматриваемых случайных величин следует, что

Следовательно, в сумме (8) остаются только члены с i=j, а они равны как раз D(Xi). Полученные в утверждениях 8-10 фундаментальные свойства таких характеристик случайных величин, как мат. ожидание и дисперсия, постоянно используются практически во всех вероятностно-статистических моделях реальных явлений и процессов.

Пример 9. Рассмотрим событие А и случайную величину Х такую, что

Воспользуемся формулой для мат. ожидания. Случайная величина Х принимает два значения — 0 и 1, значение 1 с вероятностью Р(А) и значение 0 с вероятностью 1 — Р(А), а потому:

Вынося общий множитель, получаем, что:

Пример 10. Рассмотрим k независимых испытаний, в каждом из которых некоторое событие А может наступить, а может и не наступить. Введем случайные величины X1, X2,…, Xk следующим образом:

Тогда случайные величины X1, X2,…, Xk попарно независимы. Как показано в примере 9

Иногда р называют «вероятностью успеха» — в случае, если наступление события А рассматривается как «успех».

Целями исследования зависимости между признаками являются доказательство наличия связи между признаками и изучение этой связи. Для доказательства наличия связи между двумя случайными величинами Х и У применяют корреляционный анализ. Если совместное распределение Х и У является нормальным, то статистические выводы основывают на выборочном коэффициенте линейной корреляции, в остальных случаях используют коэффициенты ранговой корреляции Кендалла и Спирмена, а для качественных признаков — критерий хи-квадрат.

Коэффициент корреляции (Correlation coefficient) — это

Свойства коэффициента корреляции

Коэффициент корреляции р для генеральной совокупности, как правило, неизвестен, поэтому он оценивается по экспериментальным данным, представляющим собой выборку объема n пар значений (Xi, Yi), полученную при совместномизмерении двух признаков Х и Y. Коэффициент корреляции, определяемый по выборочным данным, называется выборочным коэффициентом корреляции (или просто коэффициентом корреляции). Его принято обозначать символом r.

Коэффициент корреляции (Correlation coefficient) — это

Коэффициенты корреляции — удобный показатель связи, получивший широкое применение в практике. К их основным свойствам необходимо отнести следующие:

1. Коэффициенты корреляции способны характеризовать только линейные связи, т.е. такие, которые выражаются уравнением линейной функции. При наличии нелинейной зависимости между варьирующими признаками следует использовать другие показатели связи.

2. Значения коэффициентов корреляции — это отвлеченные числа, лежащее в пределах от -1 до +1.

3. При независимом варьировании признаков, когда связь между ними отсутствует.

4. При положительной, или прямой, связи, когда с увеличением значений одного признака возрастают значения другого, коэффициент корреляции приобретает положительный (+) знак и находится в пределах от 0 до +1.

5. При отрицательной, или обратной, связи, когда с увеличением значений одного признака соответственно уменьшаются значения другого, коэффициент корреляции сопровождается отрицательным (-) знаком и находится в пределах от 0 до -1.

6. Чем сильнее связь между признаками, тем ближе величина коэффициента корреляции к 1. Если коэффициент корреляции + — 1, то корреляционная связь переходит в функциональную, т.е. каждому значению признака Х будет соответствовать одно или несколько строго определенных значений признака Y.

7. Только по величине коэффициентов корреляции нельзя судить о достоверности корреляционной связи между признаками. Этот параметр зависит от числа степеней свободы. Чем больше n, тем выше достоверность связи при одном и том же значении коэффициента корреляции.

В практической деятельности, когда число коррелируемых пар признаков Х и Y невелико, то при оценке зависимости между показателями используется следующую градацию:

— высокая степень взаимосвязи — значения коэффициента корреляции находится в пределах от 0,7 до 0,99;

— средняя степень взаимосвязи — значения коэффициента корреляции находится в пределах от 0,5 до 0,69;

— слабая степень взаимосвязи — значения коэффициента корреляции находится от 0,2 до 0,49.

Оценка корреляционной связи по коэффициенту корреляции

При изучении корреляционной связи важным направлением анализа является оценка степени тесноты связи. Понятие степени тесноты связи между двумя признаками возникает вследствие того, что в реальной действительности на изменение результативного признака влияют несколько факторов. При этом влияние одного из факторов может выражаться более заметно и четко, чем влияние других факторов. С изменением условий в качестве главного, решающего фактора может выступать другой.

При статистическом изучении взаимосвязей, как правило, учитываются только основные факторы. А вопрос необходимо ли вообще изучать более подробно данную связь и практически ее использовать, решается с учетом степени тесноты связи. Зная количественную оценку тесноты корреляционной связи, таким образом, можно решить следующую группу вопросов: необходимо ли глубокое изучение данной связи между признаками и целесообразно ли ее практическое применение; сопоставляя оценки тесноты связи для различных условий, можно судить о степени различий в ее проявлении в конкретных условиях; последовательное рассмотрение и сравнение признака у с различными факторами (х1, х21, …) позволяет выявить, какие из этих факторов в данных конкретных условиях являются главными, решающими факторами, а какие второстепенными, незначительными факторами;

Показатели тесноты связи должны удовлетворять ряду основных требований: величина показателя степени тесноты связи должна быть равна или близка к нулю, если связь между изучаемыми признаками (процессами, явлениями) отсутствует; при наличии между изучаемыми признаками (х и у) функциональной связи величина степень тесноты связи равна единице; при наличии между признаками (х и у) корреляционной связи показатель тесноты связи выражается правильной дробью, которая по величине тем больше, чем теснее связь между изучаемыми признаками (стремится к единице); при прямолинейной корреляционной связи показатели тесноты связи отражают и направление связи: знак (+) означает наличие прямой (положительной) связи; а знак (-) — обратной (отрицательной).

Для характеристики степени тесноты корреляционной связи могут применяться различные статистические показатели: коэффициент Фехнера (КФ), коэффициент линейной (парной) корреляции (r), коэффициент детерминации, корреляционное отношение ( ), индекс корреляции, коэффициент множественной корреляции (R), коэффициент частной корреляции (r) и др. В данном вопросе рассмотрим коэффициент линейной корреляции (r) и корреляционное отношение.

Более совершенным статистических показателем степени тесноты корреляционной связи является линейный коэффициент корреляции (r), предложенный в конце XIX в. При расчете коэффициента корреляции сопоставляются абсолютные значения отклонений индивидуальных величин факториального признака х и результативного признака у от их средних.

Однако непосредственно сопоставлять между собой эти полученные результаты нельзя, т.к. признаки, как правило, выражены в различных единицах и даже при наличии одинаковых единиц измерения будут иметь различные по величине средние и различные вариации. В этой связи сравнению подлежат отклонения, выраженные в относительных величинах, т.е. в долях среднего квадратического отклонения (их называют нормированными отклонениями).

Коэффициент корреляции (Correlation coefficient) — это

На практике коэффициент корреляции используется как некоторый «градусник», который показывает «ноль» в случае независимости переменных, плюс единицу в случае прямой линейной зависимости переменных и минус единицу в случае обратной линейной зависимости переменных. Значения коэффициента, находящиеся между нулем и единицей понимаются (с математической точки зрения необосновано!) так: чем ближе значение коэффициента корреляции к нулю, тем слабее зависимость, чем ближе к (плюс или минус) единице — тем сильнее зависимость. Отметим, что речь идет лишь об интерпретации свойств коэффициента корреляции, при этом аналитик далеко выходит за рамки математически точных утверждений.

Важно! Принято считать, что чем cor(x,y) ближе по модулю к 1, тем ближе связь между анализируемыми переменными к линейной. Если величина cor(x,y) близка к -1, то связь обратная (С возрастанием переменной х переменная у убывает). Если величина cor(x,y) близка к +1, то связь прямая (С возрастанием переменной х переменная у возрастает).

Обычно задается вопрос, какие значения коэффициента корреляции указывают на сильную зависимость, а какие на слабую. Этот вопрос не имеет ответа. Строгая теория по этому поводу ничего не говорит. Тем не менее, во многих пособиях приводится ответ, но к огорчению новичков, в каждой книге ответ свой! Отчасти это связано с тем, что в разных дисциплинах сложились разные традиции интерпретации коэффициента.

Имейте в виду, что значения, приведенные в таблице, могут служить лишь неточными ориентирами. Заметьте, что в таблице рассматривается модуль коэффициента корреляции.

Взаимосвязь должна интерпретироваться в оба направления. Формально, корреляция не обозначает причинно-следственной связи! Это ВЗАИМОсвязь, ВЗАИМОсовпадение, явлений. Возвращаясь к примеру: застенчивость взаимосвязана с депрессивностью. Логично подумать, что депрессивный человек более застенчив, чем не депрессивный, но почему не наоборот? С чего начинать рассуждение? Мы интерпретируем корреляцию в оба направления и не констатируем причинно-следственную связь. Пишем «кореляция», «взаимосвязь», подразумеваем — совпадение. Причем сильная корреляция обозначает неслучайное совпадение.

Есть случаи, когда корреляция может говорить о причинно следственной связи. Это случаи, когда одна из переменых общективна, а вторая субъективна. К объективным переменным относятся возраст, стаж, рост, которые просто не могут зависеть от субъективных переменных: настроения, особенностей личности, мотивации и т.д. Однако, такие объективные переменные, как вес, количество детей в семье, частота смены места работы, количество контактов и т.п. могут и часто зависят от субъективных психологических показателей.

Коэффициент корреляции (Correlation coefficient) — это

К примеру, профессионализм рабочего повышается со стажем. Стаж и профессионализм коррелируют и мы можем быть уверены, что для повышения профессионализма стаж является объективной причиной. Объективные переменные, основанные на времени всегда являются причиной при наличии корреляции с субъективными характеристиками. В остальных случаях нужно очень осторожно относиться к причинно-следственным интерпретациям коэффициента корреляции.

Если причинно-следственная связь обоснована в теоретической части работы и подтверждается многими авторами, то корреляцию так же можно интерпретировать как причинно-следственную связь.

— прямая положительная и отрицательная взаимосвязь. Два явления непосредственно совпадают, поэтому взаимосвязаны. Интеллект и успеваемость в школе, общительность и застенчивость — яркие примеры прямой взаимосвязи;

Коэффициент корреляции (Correlation coefficient) — это

— косвеная взаимосвязь. Два явления сильно коррелируют с третьим, поэтому между собой так же имеют корреляцию. К примеру, стиль общения ребенка взаимосвязан со стилем воспитания в семье за счет третьей переменной — установок личности. Очевидно, что воспитание в семье формирует установки ребенка, в свою очередь установки влияют на поведение;

— нулевая корреляция. Предполагает отсутствие закономерной взаимосвязи между переменными;

— сучайная взаимосвязь. Корреляция может быть случайной! Очень многие процессы происходят одновременно и совпадают. Здесь уместно сказать, что если много-много коррелировать — что нибудь обязательно скоррелируется.

Значения коэффициента корреляции

Значимость коэффициента корреляции. Выборочный коэффициент корреляции Пирсона является оценкой генерального коэффициента корреляции. В данном случае решается следующий вопрос. Может ли выборочный коэффициент корреляции случайно отличаться от нуля, а в действительности случайные переменные Х и Y — некоррелированы?

Решение этого вопроса дается с помощью распределения вероятностей для выборочного коэффициента корреляции при условии, что генеральный коэффициент корреляции = 0. Существует таблица случайных отклонений от нуля произведения

в зависимости от вероятности Р и объема выборки n.

Если выборочный коэффициент корреляции окажется больше приведенного в таблице граничного значения, то с надежностью Р можно утверждать, что генеральный коэффициент корреляции ρ(X,Y) отличен от нуля. Значимость коэффициента корреляции можно проверить, решив следующую задачу проверки гипотез. Выдвигаются гипотезы:

Задается уровень значимости. Статистика Т определяется по формуле:

где n — число пар данных. Статистика Т подчиняется t-распределению Стьюдента с n-2 числом степеней свободы. По таблице t-распределения определяется:

Если Т, полученное по выборке, удовлетворяет условию, то отвергается и коэффициент корреляции считается значимым. При проверке значимости коэффициента корреляции рангов исходят из того, что в случае справедливости нулевой гипотезы об отсутствии корреляционной связи между переменными, при n>10, статистика:

имеет t-распределение Стьюдента с k=n-2 степенями свободы. Коэффициент корреляции значим на уровне а, если фактически наблюдаемое значение t будет больше критического по абсолютной величине:

При интерпретации коэффициента корреляции следует понимать, что:

— Корреляция между двумя случайными величинами может быть вызвана влиянием других факторов, и для объяснения полученных результатов нужно хорошо знать область приложения;

— Корреляция как формальное статистическое понятие не вскрывает причинного характера связи, т. е. нельзя указать, какую переменную принимать в качестве причины, а какую — в качестве следствия.

Относительная сила зависимости, или связи, между двумя переменными, образующими двумерную выборку, измеряется коэффициентом корреляции, изменяющимся от -1 для идеальной обратной зависимости до +1 для идеальной прямой зависимости. Коэффициент корреляции обозначается греческой буквой ρ. Линейность корреляции означает, что все точки, изображенные на диаграмме разброса, лежат на прямой. На панели А изображена обратная линейная зависимость между переменными X и Y. Таким образом, коэффициент корреляции ρ равен -1, т.е., когда переменная X возрастает, переменная Y убывает. На панели Б показана ситуация, в которой между переменными X и Y нет корреляции. В этом случае коэффициент корреляции ρ равен 0, и, когда переменная X возрастает, переменная Y не проявляет никакой определенной тенденции: она ни убывает, ни возрастает. На панели В изображена линейная прямая зависимость между переменными X и Y. Таким образом, коэффициент корреляции ρ равен +1, и, когда переменная X возрастает, переменная Y также возрастает.

Совет от Генри Форда:  Российский брокер бинарных опционов

При анализе выборок, содержащих двумерные данные, вычисляется выборочный коэффициент корреляции, который обозначается буквой r. В реальных ситуациях коэффициент корреляции редко принимает точные значения -1, 0 и +1. На рисунке приведены шесть диаграмм разброса и соответствующие коэффициенты корреляции r между 100 значениями переменных X и Y.

На панели А показана ситуация, в которой выборочный коэффициент корреляции r равен -0,9. Прослеживается четко выраженная тенденция: небольшим значениям переменной X соответствуют очень большие значения переменной Y, и, наоборот, большим значениям переменной X соответствуют малые значения переменной Y. Однако данные не лежат на одной прямой, поэтому зависимость между ними нельзя назвать линейной. На панели Б приведены данные, выборочный коэффициент корреляции между которыми равен -0,6. Небольшим значениям переменной X соответствуют большие значения переменной Y. Обратите внимание на то, что зависимость между переменными X и Y нельзя назвать линейной, как на панели А, и корреляция между ними уже не так велика. Коэффициент корреляции между переменными X и Y, изображенными на панели В, равен -0,3. Прослеживается слабая тенденция, согласно которой большим значениям переменной X, в основном, соответствуют малые значения переменной Y. Панели Г-Е иллюстрируют положительную корреляцию между данными — малым значениям переменной X соответствуют большие значения переменной Y.

Обсуждая рисунке, мы употребляли термин тенденция, поскольку между переменными X и Y нет причинно-следственных связей. Наличие корреляции не означает наличия причинно-следственных связей между переменными X и Y, т.е. изменение значения одной из переменных не обязательно приводит к изменению значения другой. Сильная корреляция может быть случайной и объясняться третьей переменной, оставшейся за рамками анализа. В таких ситуациях необходимо проводить дополнительное исследование. Таким образом, можно утверждать, что причинно-следственные связи порождают корреляцию, но корреляция не означает наличия причинно-следственных связей.

Средняя ошибка коэффициента корреляции

Коэффициенты корреляции и регрессии, характеризующие зависимость между признаками групп животных, являются статистическими величинами, поэтому обладают свойством репрезентативности. Достоверность их величин устанавливают при помощи ошибок репрезентативности, вытекающих из самой сущности выборочного обследования, при котором целое характеризуется на основании изучения части.

Ошибки коэффициентов корреляции вычисляют по следующим формулам:

— для коэффициента корреляции r при многочисленной выборке (n>30):

— для r при малочисленной выборке (n 0,70; средняя — при 0,50.

Для более точного ответа на вопрос о наличии линейной корреляционной связи необходима проверка соответствующей статистической гипотезы.

В MS Excel для вычисления парных коэффициентов линейной корреляции используется специальная функция КОРРЕЛ (массив1; массив2), где массив1 — ссылка на диапазон ячеек первой выборки (X); массив2 — ссылка на диапазон ячеек второй выборки (Y).

Пример. 10 студентам были даны тесты на конструкторское и логическое мышление. Измерялось среднее время решения заданий теста в секундах. Исследователя интересует вопрос: существует ли взаимосвязь между временем решения этих задач? (Переменная X — среднее время решения конструкторских заданий, а переменная Y- среднее время решения логических заданий тестов).

Коэффициент корреляции (Correlation coefficient) — это

Алгоритм решения. Для выявления степени взаимосвязи, прежде всего, не-обходимо ввести данные в таблицу MS Excel. Затем вычисляется значение коэффициента корреляции. Для этого курсор установите в ячейку C1. На панели инструментов нажмите кнопку Вставка функции (fx). В появившемся диалоговом окне Мастер функций выберите категорию Статистические и функцию КОРРЕЛ, после чего нажмите кнопку ОК. Указателем мыши введите диапазон данных выборки Х в поле массив1 (А1:А10). В поле массив2 введите диапазон данных выборки Y (В1:В10). Нажмите кнопку ОК.

В ячейке С1 появится значение коэффициента корреляции — 0,54119. После этого нужно вычислить наблюдаемое значение критерия по формуле:

Далее необходимо по статистическим таблицам определить критические значения по Приложению 6 (критические точки распределения Стьюдента — двусторонние). При нахождении критических значений число степеней свободы. Тогда критические точки t(0,05;8)=2,31. Поскольку наблюдаемое значение критерия принадлежит области принятия нулевой гипотезы, она принимается. Иными словами линейной корреляционной связи между временем решения конструкторских и логических заданий теста нет.

Коэффициент корреляции (Correlation coefficient) — это

При большом числе наблюдений, когда коэффициенты корреляции необходимо последовательно вычислять для нескольких выборок, для удобства получаемые коэффициенты сводят в таблицы, называемые корреляционными матрицами. Корреляционная матрица — это квадратная таблица, в которой на пересечении соответствующих строки и столбца находится коэффициент корреляции между соответствующими параметрами.

В MS Excel для вычисления корреляционных матриц используется процедура Корреляция из пакета Анализ данных. Процедура позволяет получить корреляционную матрицу, содержащую коэффициенты корреляции между различными параметрами. Для реализации процедуры необходимо:

Коэффициент корреляции (Correlation coefficient) — это

— выполнить команду Анализ данных и в появившемся списке Инструменты анализа выбрать строку Корреляция инажать кнопку ОК;

— впоявившемся диалоговом окне указать Входной интервал, то есть ввести ссылку на ячейки, содержащие анализируемые данные. Входной интервал должен содержать не менее двух столбцов;

Коэффициент корреляции (Correlation coefficient) — это

— в разделе Группировка переключатель установить в соответствии с введенными данными (по столбцам или по строкам);

— указать выходной интервал, то есть ввести ссылку на ячейку, с которой будут показаны результаты анализа. Размер выходного диапазона будет определен автоматически, и на экран будет выведено сообщение в случае возможного наложения выходного диапазона на исходные данные. Нажать кнопку ОК.

В выходной диапазон будет выведена корреляционная матрица, в которой на пересечении каждых строки истолбца находится коэффициент корреляции между соответствующими параметрами. Ячейки выходного диапазона, имеющие совпадающие координаты строк и столбцов, содержат значение 1, так как каждый столбец во входном диапазоне полностью коррелирует сам с собой. Рассматривается отдельно каждый коэффициент корреляции между соответствующими параметрами. Отметим, что хотя в результате будет получена треугольная матрица, корреляционная матрица симметрична. Подразумевается, что в пустых клетках в правой верхней половине таблицы находятся те же коэффициенты корреляции, что и в нижней левой (симметрично относительно диагонали).

Пример. Имеются ежемесячные данные наблюдений за состоянием погоды и посещаемостью музеев и парков. Необходимо определить, существует ли взаимосвязь между состоянием погоды и посещаемостью музеев и парков.

Алгоритм решения. Для выполнения корреляционного анализа введите в диапазон A1:G3 исходные данные (рис. 3). Затем выберите пункт Анализ данных и далее укажите строку корреляция. В появившемся диалоговом окне укажите Входной интервал (А2:С7). Укажите, что данные рассматриваются по столбцам. Укажите выходной диапазон (Е1) и нажмите кнопку ОК.

На рисунке видно, что корреляция между состоянием погоды и посещаемостью музея равна -0,92; а между состоянием погоды и посещаемостью парка 0,97; между посещаемостью парка и музея -0,92. Таким образом, в результате анализа выявлены зависимости: сильная степень обратной линейной взаимосвязи между посещаемостью музея и количеством солнечных дней; практически линейная (очень сильная прямая) связь между посещаемостью парка и состоянием погоды; сильная обратная взаимосвязь между посещаемостью музея и парка.

Выборочный коэффициент корреляции:

В Excel для вычисления коэффициента корреляции используется функция =КОРРЕЛ():

Итак, коэффициент корреляции свидетельствует о линейной зависимости, или связи, между двумя переменными. Чем ближе коэффициент корреляции к -1 или +1, тем сильнее линейная зависимость между двумя переменными. Знаккоэффициента корреляции определяет характер зависимости: прямая (+) и обратная (-). Сильная корреляция не является причинно-следственной зависимостью. Она лишь свидетельствует о наличии тенденции, характерной для данной выборки.

Коэффициент корреляции (Correlation coefficient) — это

Допустим, у меня есть две дискретных случайных величины: вероятность: 0,1. 0,8. 0,1, значения:100. 150. 200 и вторая случайная величина аналогична, только вероятности 0,25;0,5;0,25 и значения 200, 250, 300 соответственно. Как рассчитать ковариацию на основе этих распределений? Нужно ли считать распределение произведения? В Excel есть функция КОВАР — но она вместо мат. ожидания использует СРЗНАЧ, просьба подсказать как рассчитать вручную.

Перепробовал все какие нашел формулы из Интернета, все выдают какую-то лажу, в частности коэффициент корреляции по ним получается то больше единицы, то всегда 0, то не получается единицей в указанном выше случае. Коэффициент корреляции получаю делением на произведение среднеквадратичных отклонений, дисперсию для стандартного отклонения считаю как взвешенную по вероятностям сумму разниц квадратов значений случайной величины и её мат. ожидания (мат ожидание рассчитываю как взвешенные по вероятности значения случайной величины).

Для вычисления корреляции случайных величин нужно знать их совместное распределение. То есть, грубо говоря, знать, как часто вторая величина принимает значения 200, 250 и 300, если первая величина равна 100 (то же для других значений). Вы такой информации не дали. То, что Вы нашли в Excel — это другая величина, выборочная корреляция (ее можно рассматривать как оценку истинной, но это другая тема). Она вычисляется для парной выборки (x1,x2. xn),(y1,y2. yn), где одинаковый индекс соответствует одному и тому же объекту. При таком понимании эти величины взаимосвязаны. Если же значения в каждом наборе перемешать независимо от другого (например, упорядочить), получим совсем другой (и неправильный) ответ.

Коэффициент корреляции (Correlation coefficient) — это

Посмотрела Ваш файл. Вы пытаетесь найти совместное распределение как произведение распределений двух величин. Это означает, что две Ваши величины независимы, и корреляция между ними должна быть равна 0. Дополнение.Скриншот вычисления при правильно подобранных совместных вероятностях.

Принципы интерпретации коэффициента корреляции

Основные принципы интерпретации различных коэффициентов корреляции одинаковы. В случае дихотомической шкалы мы говорим о вероятности совпадения (прямого или обратного) ответов типа да/нет, в случае рангов о вероятности совпадения порядка, в случае коэффициента линейной корреляции мы говорим о степени совместного изменения переменных или о их взаимосвязи.

Коэффициент корреляции (Correlation coefficient) — это

Полученный коэффициент нужно проверить на значимость, которая зависит от вероятности ошибки и количества человек. Коэффициент корреляции может быть формально небольшим, к примеру r=0,17, но если исследование проведено на 500 человек и вероятность ошибки (р) менее 0,05, то мы признаём значимым даже такой небольшой коэффициент. С другой стороны, при выборке в 5 человек очень большой коэффициент мы признаем незначимым, т.к. из-за малого количества человек мы можем совершить ошибочный вывод об этой корреляции.

Таким образом, для нас главное узнать какой должна быть вероятность ошибки и количество человек, чтобы признать полученный коэффициент действительно значимым.

Расчет значения р (вероятности ошибки) — сложная процедура, поэтому компьютерные программы, в которых можно считать коэффициент корреляции, расчитывают вероятность ошибки самостоятельно. Если же расчет производился вручную или по другим причинам конкретное значение р неизвестно, то используем уже рассчитанные таблицы критических значений.

Коэффициент корреляции (Correlation coefficient) — это

Таблицы критических значений предназначены чтобы можно было найти критическое значение коэффициента корреляции, т.е. такое, после которого взаимосвязь можно считать значимой и неслучайной. При этом значение вероятности ошибки задаётся исследователем. В таблицах обычно есть критические значения коэффициентов корреляции для р 30 в общем случае значение ЛКК считается значимым. Результаты расчетов отражены на рисунке:

Выводы по рисунка: На протяжении всего периода выборки у акций Лукойла наблюдается неярко выраженная положительная корреляция между максимальными ценами соседних недель (красная линия графика с ЛКК = +0,1). То есть факт обновления максимальной цены на текущей неделе по сравнению с предыдущей позволяет сделать предположение о том, что на следующей неделе в сравнении с текущей вероятность обновления максимума выше вероятности НЕобновления максимума.

Коэффициент корреляции (Correlation coefficient) — это

ЛКК, построенное по последним 30 неделям (синяя линия на графике), изменяется в диапазоне от -0,35 (сильная отрицательная корреляция) до +0,6 (очень сильная положительная корреляция). Самый продолжительный период, в течение которого корреляция между недельными максимумами была положительная — это период с мая 2004 года до августа 2007 года. В этот период обновление максимумов на прошлой неделе в большинстве случаев приводило к обновлению максимумов в течение текущей недели. Именно в этот период акции Лукойла агрессивно росли.

Самый продолжительный период, в течение которого корреляция между недельными максимумами была отрицательная — это период с августа 2007 года по июль 2020 года. В этот период недельной обновление максимумов на прошлой неделе в большинстве случаев не приводило к обновлению максимумов в течение текущей недели. И наоборот, НЕобновление недельных максимумов в течение текущей недели в большинстве случае приводило к росту на следующей неделе. В этот период акции Лукойла «запилило» от максимумов весной 2008 года до низов в июле 2009 года.

В точках, где синяя линия находится выше красной, корреляция между недельными максимумами выше средней за период и имеет прямую направленность. В таких точках при обновлении недельных максимумов на текущей неделе наиболее вероятно обновление максимумов в течение следующей недели. В точках, где синяя линия находится ниже красной, корреляция между недельными максимумами ниже средней за период и имеет в основном обратную направленность. В таких точках, в отличие от ситуации п.5, наиболее вероятно обновление максимумов в течение следующей недели при НЕобновлении недельных максимумов текущей недели.

Коллеги, на основании последних двух выводов у меня сформировалась идея тестирования стратегии, построенной на принципах такого парного корреляционного эффекта.

Коэффициент корреляции (Correlation coefficient) — это

Торговля ациями по коэффициенту корреляции

Стратегия, построенная на принципах автокорреляции. Общее описание стратегии. Принципы стратегии: тестируемый инструмент — акции Лукойла (LKOH) на недельном ТФ за период с 01.01.2001 по 31.07.2020; типы совершаемых сделок — исключительно Long; время удержания позиции — вход на Open недельной свечи, выход на Close этой же свечи. Таким образом, удержание позиции строго в течение торговой недели без ухода в бумагах на выходные; внешние факторы — цены на нефть, мировые новости, динамика западных рынков и проч. — не учитываются; внутренние факторы — внутрикорпоративные новости, дивидендные отсечки и проч. — не учитываются.

Принципы формирования сигналов: Методом тестирования определяется некое критическое скользящее значение линейного коэффициента корреляции (далее — ЛККкр) по 30 периодам. Покупка Вариант 1. Если текущее значение ЛКК ВЫШЕ критического значения и на текущей неделе ПРОИЗОШЛО обновление максимума по сравнению с прошлой неделей, то на Open следующей недели происходит покупка. Срок удержания позиции — не позднее Close недели открытия позиции.

Покупка Вариант 2. Если текущее значение ЛКК НИЖЕ критического значения и на текущей неделе НЕ ПРОИЗОШЛО обновление максимума по сравнению с прошлой неделей, то на Open следующей недели происходит покупка. Срок удержания позиции — не позднее Close недели открытия позиции. Во всех остальных случаях — вне позиции (cash). Таким образом, для принятия решения о входе/невходе в позицию необходима информация о максимальных ценах последних 30ти недель. И ничего более сверх этого.

Коэффициент корреляции (Correlation coefficient) — это

Само решение принимается в промежутке между закрытием торговой недели и открытием следующей торговой недели. В случае формирования торгового сигнала трейдеру необходимо находиться в рынке утром первого дня торговой недели для открытия позиции и вечером последнего дня торговой недели для выхода из бумаг. Для тестирования такой стратегии вполне хватило возможностей Excel. У недельного Лукойла критическим значением ЛКК оказалось значение 0,15. Приведу пару примеров для иллюстрации:

Сигнал от 25.06.12. В данном случае выполнены оба условия покупки: ЛККкр=0,1855 (>0,15) и обновлен максимум предыдущей недели (1805 руб. > 1765 руб.). На основании этого на Open свечи 02.07.12 совершена покупка по 1804 руб. Позиция закрыта на Close свечи 02.07.12, то есть 06.07.12, по цене 1825 руб. Рентабельность сделки составила +1,2% при периоде удержания позиции 5 сессий.

Сигнал от 02.07.12. В данном случае так же выполнены оба условия покупки: ЛККкр=0,2472 (>0,15) и обновлен максимум предыдущей недели (1857 руб. > 1805 руб.). На основании этого на Open свечи 09.07.12 совершена покупка по 1826 руб. Позиция закрыта на Close свечи 09.07.12, то есть 13.07.12, по цене 1818 руб. Рентабельность сделки составила -0,4% при периоде удержания позиции 5 сессий.

Сигнал от 07.05.12. В данном случае выполнены оба условия покупки: ЛККкр=0,1098 ( 0,15 + новый максимум)

Из 600 недель тестового периода сигналы по Варианту 1 возникли в 109 случаях (19% потока или каждая пятая неделя). Из 109 сигналов 74 отработали в плюс (68%, или два из трех сигналов). Средний результат положительного исхода равен по модулю среднему результату отрицательного исхода (38 руб./акция) Общий положительный результат потока сигналов сформирован за счет превышения в 2 раза количества положительных исходов над отрицательными исходами.

Коэффициент корреляции (Correlation coefficient) — это

С учетом частоты распределения положительных и отрицательных исходов расчет математического ожидания выглядит следующим образом: Размер ожидаемого успеха +26 руб./акция, Размер ожидаемого убытка -13 руб./акция, Общий ожидаемый результат +13 руб./акция, Размер среднеквадратичного отклонения исходов сигналов составляет 24 руб./акция. Диапазон колебаний исходов сигналов находится в пределах [-11 руб.;+38 руб.], Максимальная серия подряд убыточных сигналов составила 2 сигнала с максимальным риском не более 178 руб./акция. В нынешних ценах это около 9% торгового депозита.

Покупка по Варианту 2 (ЛККкр

Энциклопедия инвестора . 2020 .

Смотреть что такое «Коэффициент корреляции» в других словарях:

Коэффициент корреляции — Математическое представление о степени связи между двумя сериями измерений. Коэффициент +1 обозначает четкую позитивную корреляцию: высокие показатели по одному параметру (например, рост) точно соотносятся с высокими показателями по другому… … Большая психологическая энциклопедия

КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ — ρ μера силы линейной связи между случайными величинами X и У: , где ЕХ математическое ожидание X; DX дисперсия X, EY математическое ожидание У; DY дисперсия У; 1 ≤ ρ ≤ 1. Если X, Y линейно связаны, то ρ = ± 1. Для… … Геологическая энциклопедия

Совет от Генри Форда:  Вход в личный кабинет 24 option.com

КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ — англ. coefficient, correlation; нем. Korrelationskoeffizient. Мера тесноты связи двух или более переменных. Antinazi. Энциклопедия социологии, 2009 … Энциклопедия социологии

коэффициент корреляции — — [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии EN correlation coefficient … Справочник технического переводчика

Коэффициент корреляции — Корреляция статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом, изменения одной или нескольких из этих величин приводят к… … Википедия

коэффициент корреляции — 1.33. коэффициент корреляции Отношение ковариации двух случайных величин к произведению их стандартных отклонений: Примечания 1. Эта величина всегда будет принимать значения от минус 1 до плюс 1, включая крайние значения. 2. Если две случайные… … Словарь-справочник терминов нормативно-технической документации

КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ — (correlation coefficient) мера ассоциации одной переменной с другой. См. Корреляция; Коэффициент корреляции производного значения Пирсона; Коэффициент ранговой корреляции спирмена … Большой толковый социологический словарь

Коэффициент корреляции — CORRELATION COEFFICIENT Показатель степени линейной зависимости между двумя переменными величинами: Коэффициент корреляции может изменяться в пределах от 1 до 1. Если большим значениям одной величины соответствуют большие значения другой (и… … Словарь-справочник по экономике

коэффициент корреляции — koreliacijos koeficientas statusas T sritis automatika atitikmenys: angl. correlation coefficient vok. Korrelationskoeffizient, m rus. коэффициент корреляции, m pranc. coefficient de corrélation, m … Automatikos terminų žodynas

коэффициент корреляции — koreliacijos koeficientas statusas T sritis fizika atitikmenys: angl. correlation coefficient vok. Korrelationskoeffizient, m rus. коэффициент корреляции, m pranc. coefficient de corrélation, m … Fizikos terminų žodynas

Интерпретация коэффициента корреляции

Сущность и понятие корреляции, основное назначение корреляционного анализа и его задачи. Особенности ошибок при интерпретации коэффициента корреляции, выбор метода его вычисления. Корреляционный анализ метрических, ранговых и дихотомических переменных.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 17.12.2020
Размер файла 521,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Интерпретация коэффициента корреляции

Следует, прежде всего, помнить, что корреляция не является показателем зависимости одного фактора от другого, а лишь устанавливает их совместную вариативность. (Это относится, как к линейной, так и к ранговой корреляции). То обстоятельство, что два признака изменяются согласованно, может зависеть и от влияния третьей причины на оба сопоставляемых признака.

Пусть имеются два ряда случайных чисел (две переменные с набором значений):

Х: 0 4 2 6 6 2 9 8 5 3

У: 8 9 1 0 5 2 4 6 7 1

Для этих рядов, никак между собой не связанных, коэффициент корреляции очень близок к нулю, и равен r = 0,006.

1. Возьмем теперь еще один случайный ряд Z: 7 2 5 7 2 3 9 2 2 1, и разделим на значения этого ряда значения первого и второго (или прибавим, или отнимем, или перемножим). Вследствие этого третий ряд окажет некоторое одинаковое воздействие на два первых ряда, и коэффициент корреляции между ними станет больше: r = 0,583 в случае деления. Третий ряд выступил в этом примере в качестве общей причины, корреляция между Х и У обусловлена теперь не собственным сходством этих рядов, а влиянием Z.

2. В общем случае коэффициент корреляции изменяется в пределах -1 б, H0 не отклоняется, содержательный вывод ограничен констатацией, что связь (статистически достоверная) не обнаружена.

Если связь не обнаружена, но есть основания полагать, что связь на самом деле есть, следует проверить возможные причины недостоверности связи.

Нелинейность связи — для этого проанализировать график двумерного рассеивания. Если связь нелинейная, но монотонная, перейти к ранговым корреляциям. Если связь не монотонная, то делить выборку на части, в которых связь монотонная, и вычислить корреляции отдельно для каждой части выборки, или делить выборку на контрастные группы и далее сравнивать их по уровню выраженности признака.

Наличие выбросов и выраженная асимметрия распределения одного или обоих признаков. Для этого необходимо посмотреть гистограммы распределения частот обоих признаков. При наличии выбросов или асимметрии исключить выбросы или перейти к ранговым корреляциям.

Неоднородность выборки (проанализировать график двумерного рассеивания). Попытаться разделить выборку на части, в которых связь может иметь разные направления.

Если же связь статистически достоверна, то прежде чем делать содержательный вывод, необходимо исключить возможность ложной корреляции:

· связь обусловлена выбросами. При наличии выбросов перейти к ранговым корреляциям или исключить выбросы;

· связь обусловлена влиянием третьей переменной. Если есть подобное явление, необходимо вычислить корреляцию не только для всей выборки, но и для каждой группы в отдельности. Если «третья» переменная метрическая — вычислить частную корреляцию.

Коэффициент частной корреляции rxy-z вычисляется в том случае, если необходимо проверить предположение, что связь между двумя переменными X и Y не зависит от влияния третьей переменной Z. Очень часто две переменные коррелируют друг с другом только за счет того, что обе они согласованно меняются под влиянием третьей переменной. Иными словами, на самом деле связь между соответствующими свойствами отсутствует, но проявляется в статистической взаимосвязи под влиянием общей причины. Например, общей причиной изменчивости двух переменных может являться возраст при изучении взаимосвязи различных психологических особенностей в разновозрастной группе. При интерпретации частной корреляции с позиции причинности следует быть осторожным, так как если Z коррелирует и с X и с Y, а частная корреляция rxy-z близка к нулю, из этого не обязательно следует, что именно Z является общей причиной для X и Y.

Корреляция ранговых переменных

Если к количественным данным неприемлем коэффициент корреляции r-Пирсона, то для проверки гипотезы о связи двух переменных после предварительного ранжирования могут быть применены корреляции r-Спирмена или ф-Кендалла. Например, в исследовании психофизических особенностей музыкально одаренных подростков И. А. Лавочкина [7, с. 149] был использован критерий Спирмена.

Для корректного вычисления обоих коэффициентов (Спирмена и Кендалла) результаты измерений должны быть представлены в шкале рангов или интервалов. Принципиальных отличий между этими критериями не существует, но принято считать, что коэффициент Кендалла является более «содержательным», так как он более полно и детально анализирует связи между переменными, перебирая все возможные соответствия между парами значений. Коэффициент Спирмена более точно учитывает именно количественную степень связи между переменными.

Коэффициент ранговой корреляции Спирмена является непараметрическим аналогом классического коэффициента корреляции Пирсона, но при его расчете учитываются не связанные с распределением показатели сравниваемых переменных (среднее арифметическое и дисперсия), а ранги. Например, необходимо определить связь между ранговыми оценками качеств личности, входящими в представление человека о своем «Я реальном» и «Я идеальном».

Коэффициент Спирмена широко используется в психологических исследованиях. Например, в работе Ю. В. Бушова и Н. Н. Несмеловой [1]: для изучения зависимости точности оценки и воспроизведения длительности звуковых сигналов от индивидуальных особенностей человека был использован именно он.

Так как этот коэффициент — аналог r-Пирсона, то и применение его для проверки гипотез аналогично применению коэффициента r-Пирсона. То есть проверяемая статистическая гипотеза, порядок принятия статистического решения и формулировка содержательного вывода — те же. В компьютерных программах (SPSS, Statistica) уровни значимости для одинаковых коэффициентов r-Пирсона и r-Спирмена всегда совпадают.

Преимущество коэффициента r-Спирмена по сравнению с коэффициентом r-Пирсона — в большей чувствительности к связи. Мы используем его в следующих случаях:

· наличие существенного отклонения распределения хотя бы одной переменной от нормального вида (асимметрия, выбросы);

· появление криволинейной (монотонной) связи.

Ограничением для применения коэффициента r-Спирмена являются:

· по каждой переменной не менее 5 наблюдений;

· коэффициент при большом количестве одинаковых рангов по одной или обеим переменным дает огрубленное значение.

Коэффициент ранговой корреляции ф-Кендалла является самостоятельным оригинальным методом, опирающимся на вычисление соотношения пар значений двух выборок, имеющих одинаковые или отличающиеся тенденции (возрастание или убывание значений). Этот коэффициент называют еще коэффициентом конкордации. Таким образом, основной идеей данного метода является то, что о направлении связи можно судить, попарно сравнивая между собой испытуемых: если у пары испытуемых изменение по X совпадает по направлению с изменением по Y, это свидетельствует о положительной связи, если не совпадает — об отрицательной связи, например, при исследовании личностных качеств, имеющих определяющее значение для семейного благополучия. В этом методе одна переменная представляется в виде монотонной последовательности (например, данные мужа) в порядке возрастания величин; другой переменной (например, данные жены) присваиваются соответствующие ранговые места. Количество инверсий (нарушений монотонности по сравнению с первым рядом) используется в формуле для корреляционных коэффициентов.

При подсчете ф-Кендалла «вручную» данные сначала упорядочиваются по переменной X. Затем для каждого испытуемого подсчитывается, сколько раз его ранг по Y оказывается меньше, чем ранг испытуемых, находящихся ниже. Результат записывается в столбец «Совпадения». Сумма всех значений столбца «Совпадение» и есть P — общее число совпадений, подставляется в формулу для вычисления коэффициента Кендалла, который более прост в вычислительном отношении, но при возрастании выборки, в отличие от r-Спирмена, объем вычислений возрастает не пропорционально, а в геометрической прогрессии. Так, например, при N = 12 необходимо перебрать 66 пар испытуемых, а при N = 489 — уже 1128 пар, т. е. объем вычислений возрастает более чем в 17 раз. При вычислениях на компьютере в статистической программе (SPSS, Statistica) коэффициент Кендалла обсчитывается аналогично коэффициентам r-Спирмена и r-Пирсона. Вычисленный коэффициент корреляции ф-Кендалла характеризуется более точным значением p-уровня.

Применение коэффициента Кендалла является предпочтительным, если в исходных данных имеются выбросы.

Особенностью ранговых коэффициентов корреляции является то, что максимальным по модулю ранговым корреляциям (+1, -1) не обязательно соответствуют строгие прямо или обратно пропорциональные связи между исходными переменными X и Y: достаточна лишь монотонная функциональная связь между ними. Ранговые корреляции достигают своего максимального по модулю значения, если большему значению одной переменной всегда соответствует большее значение другой переменной (+1), или большему значению одной переменной всегда соответствует меньшее значение другой переменной и наоборот (-1).

Проверяемая статистическая гипотеза, порядок принятия статистического решения и формулировка содержательного вывода те же, что и для случая r-Спирмена или r-Пирсона.

Если статистически достоверная связь не обнаружена, но есть основания полагать, что связь на самом деле есть, следует сначала перейти от коэффициента

r-Спирмена к коэффициенту ф-Кендалла (или наоборот), а затем проверить возможные причины недостоверности связи:

· нелинейность связи: для этого посмотреть график двумерного рассеивания. Если связь не монотонная, то делить выборку на части, в которых связь монотонная, или делить выборку на контрастные группы и далее сравнивать их по уровню выраженности признака;

· неоднородность выборки: посмотреть график двумерного рассеивания, попытаться разделить выборку на части, в которых связь может иметь разные направления.

Если же связь статистически достоверна, то прежде чем делать содержательный вывод, необходимо исключить возможность ложной корреляции (по аналогии с метрическими коэффициентами корреляции).

Корреляция дихотомических переменных

корреляция коэффициент ранговый дихотомический

При сравнении двух переменных, измеренных в дихотомической шкале, мерой корреляционной связи служит так называемый коэффициент j, который представляет собой коэффициент корреляции для дихотомических данных.

Величина коэффициента ц лежит в интервале между +1 и -1. Он может быть как положительным, так и отрицательным, характеризуя направление связи двух дихотомически измеренных признаков. Однако интерпретация ц может выдвигать специфические проблемы. Дихотомические данные, входящие в схему вычисления коэффициента ц, не похожи на двумерную нормальную поверхность, следовательно, неправильно считать, что интерпретируемые значения rxy=0,60 и ц = 0,60 одинаковы. Коэффициент ц можно вычислить методом кодирования, а также используя так называемую четырехпольную таблицу или таблицу сопряженности.

Для применения коэффициента корреляции ц необходимо соблюдать следующие условия:

· сравниваемые признаки должны быть измерены в дихотомической шкале;

· число варьирующих признаков в сравниваемых переменных X и Y должно быть одинаковым.

Данный вид корреляции рассчитывают в компьютерной программе SPSS на основании определения мер расстояния и мер сходства. Некоторые статистические процедуры, такие как факторный анализ, кластерный анализ, многомерное масштабирование, построены на применении этих мер, а иногда сами представляют добавочные возможности для вычисления мер подобия.

В тех случаях когда одна переменная измеряется в дихотомической шкале (переменная X), а другая в шкале интервалов или отношений (переменная Y), используется бисериальный коэффициент корреляции, например, при проверке гипотез о влиянии пола ребенка на показатель роста и веса. Этот коэффициент изменяется в диапазоне от -1 до +1, но его знак для интерпретации результатов не имеет значения. Для его применения необходимо соблюдать следующие условия:

· сравниваемые признаки должны быть измерены в разных шкалах: одна X — в дихотомической шкале; другая Y — в шкале интервалов или отношений;

· переменная Y имеет нормальный закон распределения;

· число варьирующих признаков в сравниваемых переменных X и Y должно быть одинаковым.

Если же переменная X измерена в дихотомической шкале, а переменная Y в ранговой шкале (переменная Y), можно использовать рангово-бисериальный коэффициент корреляции, который тесно связан с ф-Кендалла и использует в своем определении понятия совпадения и инверсии. Интерпретация результатов та же.

Итак, основное назначение корреляционного анализа — это выявление связи между переменными. Мерой связи являются коэффициенты корреляции, выбор которых напрямую зависит от типа шкалы, в которой измерены переменные, числа варьирующих признаков в сравниваемых переменных и распределения переменных. Наличие корреляции двух переменных еще не означает, что между ними существует причинная связь. Хотя корреляция прямо не указывает на причинную связь, она может быть ключом к разгадке причин. На ее основе можно сформировать гипотезы. В некоторых случаях отсутствие корреляции имеет более глубокое воздействие на гипотезу о причинной связи. Нулевая корреляция двух переменных может свидетельствовать, что никакого влияния одной переменной на другую не существует. Размещено на Allbest.ru

Подобные документы

Понятие корреляционного момента двух случайных величин. Математическое ожидание произведения независимых случайных величин Х и У. Степень тесноты линейной зависимости между ними. Абсолютное значение коэффициента корреляции, его расчет и показатель.

презентация [92,4 K], добавлен 01.11.2020

Методика и основные этапы расчета параметров линейного уравнения парной регрессии с помощью программы Excel. Анализ качества построенной модели, с использованием коэффициента парной корреляции, коэффициента детерминации и средней ошибки аппроксимации.

лабораторная работа [22,3 K], добавлен 15.04.2020

Адекватная линейная регрессионная модель. Правило проверки адекватности. Определение математического ожидания, коэффициента детерминации, множественного коэффициента корреляции по характеристикам случайных величин. Оценка дисперсии случайной ошибки.

контрольная работа [160,0 K], добавлен 13.08.2020

Обоснование оценок прямых и косвенных измерений и их погрешностей. Введение доверительного интервала в асимптотическом приближении бесконечно большого числа экспериментов. Вычисление коэффициента корреляции для оценки зависимости случайных величин.

реферат [151,5 K], добавлен 19.08.2020

Обработка одномерной и двумерной случайных выборок. Нахождение точечных оценок. Построение гистограммы функций распределения, корреляционной таблицы. Нахождение выборочного коэффициента корреляции. Построение поля рассеивания, корреляционные отношения.

курсовая работа [1,3 M], добавлен 10.06.2020

Теория вероятности, понятие вероятности события и её классификация. Понятие комбинаторики и её основные правила. Теоремы умножения вероятностей. Понятие и виды случайных величин. Задачи математической статистики. Расчёт коэффициента корреляции.

шпаргалка [945,2 K], добавлен 18.06.2020

Классификация взаимосвязи явлений, различаемых в статистике, их разновидности и характеристика, отличительные признаки. Сущность коэффициента парной корреляции, его особенности и методика оценки достоверности, применение доверительных интервалов.

реферат [1,3 M], добавлен 30.04.2009

Установление корреляционных связей между признаками многомерной выборки. Статистические параметры регрессионного анализа линейных и нелинейных выборок. Нахождение функций регрессии и проверка гипотезы о значимости выборочного коэффициента корреляции.

курсовая работа [304,0 K], добавлен 02.03.2020

Сортировка размера пенсии по возрастанию прожиточного минимума. Параметры уравнений парных регрессий. Значения параметров логарифмической регрессии. Оценка гетероскедастичности линейного уравнения с помощью проведения теста ранговой корреляции Спирмена.

контрольная работа [178,0 K], добавлен 23.11.2020

Определение вероятности наступления события по формуле Бернулли. Построение эмпирической функции распределения и гистограммы для случайной величины. Вычисление коэффициента корреляции, получение уравнения регрессии. Пример решения задачи симплекс-методом.

контрольная работа [547,6 K], добавлен 02.02.2020

Корреляционный анализ нормального закона распределения

Оценка параметров шестимерного нормального закона распределения с помощью векторов средних арифметических и среднеквадратического отклонений и матрицы парных коэффициентов корреляции (по программе Statistica). Методика определения Z-преобразования Фишера.

Подобные документы

Корреляционный и регрессионный анализ экономических показателей. Построение матрицы парных коэффициентов корреляции. Расчет и сравнение частных и парных коэффициентов корреляции. Построение регрессионной модели и её интерпретация, мультиколлинеарность.

курсовая работа, добавлен 21.01.2020

Приведение логарифмированием уравнения к линейному виду. Расчет средних значений арифметических переменных и коэффициентов регрессии. Определение средних квадратичных отклонений. Корреляционный анализ экспериментальных данных с помощью критерия Стьюдента.

контрольная работа, добавлен 10.03.2020

Расчет матрицы парных коэффициентов корреляции и статистической значимости коэффициентов регрессии. Оценка статистической значимости параметров регрессионной модели с помощью t-критерия. Уравнение множественной регрессии со статистически факторами.

лабораторная работа, добавлен 05.12.2020

Построение гистограммы и эмпирической функции распределения. Нахождение доверительного интервала для оценки математического распределения. Проверка статистической гипотезы о равенстве средних значений, дисперсий, их величине, о виде закона распределения.

курсовая работа, добавлен 29.11.2020

Построение линейной модели зависимости цены товара в торговых точках. Расчет матрицы парных коэффициентов корреляции, оценка статистической значимости коэффициентов корреляции, параметров регрессионной модели, доверительного интервала для наблюдений.

лабораторная работа, добавлен 17.10.2009

Построение вариационного (статистического) ряда, гистограммы и эмпирической функции распределения. Определение выборочных оценок числовых характеристик случайной величины. Расчет матрицы парных коэффициентов корреляции и создание модели парной регрессии.

контрольная работа, добавлен 05.04.2020

Оценка корреляционной матрицы факторных признаков. Оценки собственных чисел матрицы парных коэффициентов корреляции. Анализ полученного уравнения регрессии, определение значимости уравнения и коэффициентов регрессии, их экономическая интерпретация.

контрольная работа, добавлен 29.06.2020

Расчет стоимости оборудования с использованием методов корреляционного моделирования. Метод парной и множественной корреляции. Построение матрицы парных коэффициентов корреляции. Проверка оставшихся факторных признаков на свойство мультиколлинеарности.

задача, добавлен 20.01.2020

Использование пакета программ статистической обработки данных Statistica. Значение парных коэффициентов корреляции. Выборка, среднее стандартное отклонение. Дисперсионный анализ и регрессионная сумма. Значение критерия Фишера, статистика Дарбина-Уотсона.

контрольная работа, добавлен 23.05.2020

Построение линейного уравнения парной регрессии, расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Определение коэффициентов корреляции и эластичности, индекса корреляции, суть применения критерия Фишера в эконометрике.

контрольная работа, добавлен 05.05.2020

Эти брокеры платят деньги за открытие счета:
Понравилась статья? Поделиться с друзьями:
Бинарные опционы от выбора брокера до прибыли
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: